## Определение HLA-антител для успешной трансплантации почки



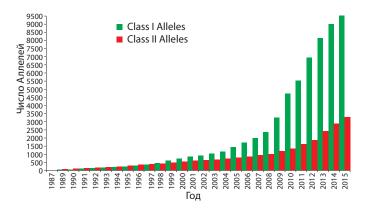













#### Общие сведения

- Предсуществующие HLA-антитела, образовавшиеся в результате гемотрансфузий, беременностей или предыдущих трансплантаций, совпадая по специфичности с генотипом донора, приводят к острой и сверхострой реакции отторжения трансплантата в первые часы или дни после операции.
- HLA-антитела, появляющиеся после трансплантации против донорских антигенов de novo, запускают реакции хронического отторжения, ухудшая качество функционирования трансплантата и время его жизни.
- На всех ядросодержащих клетках организма экспрессируются **HLA**антигены 1-ого класса: HLA-A, B, C локусов.
- На иммунокомпетентных клетках (В-лимфоцитах), антигенпрезентирующих клетках (макрофаги, дендритные клетки) и клетках эндотелия сосудов представлены **HLA-антигены 2-го класса**: HLA-DRB1 (2,3,4,5), DQA1, DQB1, DPA1, DPB1 локусов.
- У каждого человека HLA-антигены всех локусов 1 и 2 классов экспрессируются попарно (кодоминантно) в соответствии с гаплотипами родителей.

Донор-специфические HLA-антитела (DSA) являются основным пусковым механизмом в реакции гуморального отторжения при трансплантации солидных органов.

Система лейкоцитарных антигенов, ответственных за тканевую совместимость, является самой полиморфной системой антигенов у человека и животных. Число открываемых аллелей растёт с каждым годом (рисунок 1).

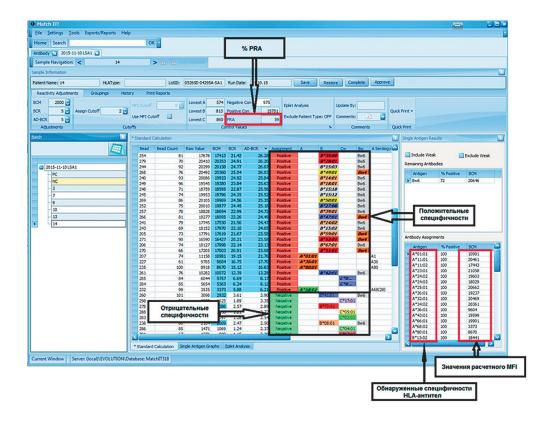


**Рисунок 1.**Полиморфизм аллелей системы HLA в динамике открытия новых аллелей по годам с 1987 по 2015 г. (http://hla.alleles.org)

Пример генотипа реципиента: Пример генотипа донора:

HLA-A\*02; 24
HLA-B\*07; 13
HLA-C\*08; 14
HLA-DRB1\*03; 11
HLA-DQB1\*03; 06
HLA-DQB1\*02; 06

Степень несовместимости (mismatch) в данном примере составляет 5/10 (пять из десяти).


- Описанная в примере степень несовместимости характерна, например, при трансплантации от родственного донора (гаплосовместимый донор). Однако, даже при трансплантации от неродственного донора часто удается достичь неплохой совместимости в силу того, что в популяции определенные аллели встречаются гораздо чаще других, и имеет место сцепленность этих аллелей в гаплотипы.
- На практике трансплантация солидных органов проводится с той или иной степенью генетического несоответствия (имеются различия в генотипах донора и реципиента по HLA). При этом главным принципом, которым следует руководствоваться для предотвращения реакций острого и хронического отторжения трансплантата, избегать неприемлемых несоответствий.
- При трансплантации органа иммунная система реагирует на все HLA-антигены, отличные от HLA-антигенов реципиента посредством реакций клеточного и гуморального отторжения.

Неприемлемые несоответствия – это присутствие в генотипе потенциального донора HLA-антигенов, к которым у реципиента имеются антитела или их появление после трансплантации имеет высокую вероятность.

HLA-антитела обладают достаточно высокой специфичностью.

PRA указывает процент потенциальных доноров, против которых у реципиента есть HLA-антитела.

- Реакции клеточного иммунитета, опосредованные Т-лимфоциты, удается достаточно успешно сдерживать препаратами иммуносупрессоров. Однако они практически не влияют на реакции гуморального иммунитета, опосредованные специфическими антидонорскими HLA-антителами. По этой причине выявление специфических к донору HLA-антител до трансплантации и их мониторинг после трансплантации позволяет гибко реагировать на риск развития отторжения и принимать соответствующие профилактические мероприятия. При высоком уровне сенсибилизации и наличии антидонорских HLA-антител реципиенту может быть рекомендован плазмоферез. Десенсибилизирующая терапия также имеет большое значение при подготовке реципиента к трансплантации от родственного донора.
- Интересно, что реципиенты с широким профилем антител до трансплантации, которым удается подобрать донора, к антигенам которого антитела отсутствуют, по статистике имеют лучший прогноз выживаемости трансплантата по сравнению с несенсибилизированными реципиентами, в виду меньшей остаточной иммунореактивности.
- Действие HLA-антител строго избирательно. Так, например, антитела в сыворотке реципиента, образовавшиеся в результате гемотрансфузии против антигена HLA-A\*03, не будут реагировать с донорским антигеном специфичности HLA-A\*23, в силу различия антигенных эпитопов, поэтому не приведут к реакции отторжения.
- Из этого правила есть некоторое исключение, когда определенные HLA-антигены имеют схожие эпитопы, и могут реагировать с антителами некоторых других специфичностей. Такие антигены объединили в кросс-реагирующие группы (CREG), которые представлены на рисунках 6–8.
- Примером кросс-реагирующих антигенов являются HLA-A\*23 и 24 (серологическая группа A9) или HLA-B\*57 и 58 (серологическая группа B17). Эти пары антигенов имеют общий антигенный эпитоп и поэтому реагируют со специфическими антителами совместно.
- Зная кросс-реагирующие свойства некоторых антител у реципиента следует избегать доноров с соответствующими генотипами.
- Сегодня врач КДЛ имеет надежный методический арсенал, позволяющий не просто выявить HLA-антитела у реципиента, а главное, определить их специфичность и комплемент-связывающую способность. Это важно для исключения неприемлемых несоответствий с каждым потенциальным донором.
- При лабораторном определении специфичностей HLA-антител методами мультиплексного Люминекс анализа программа интерпретации указывает на все имеющиеся кросс-реактивные группы обнаруженных HLA-антител, значения PRA%, а также дает численные показатели интенсивности сигнала, косвенно указывающие на титр обнаруженных антител той или иной HLA-специфичности (рисунок 2).
- Индекс PRA рассчитывается в программе автоматически на основании профиля обнаруженных специфических антител и табличной частоты встречаемости каждой специфичности в популяции. Например, PRA 25% означает, что пациент может иметь положительную реакцию «cross-match» с 25% потенциальных доноров (людей из общей популяции). PRA выше 65% характеризует потенциально высокий уровень сенсибилизации, при котором выявить конкретные иммунореактивные антитела, как правило, не удается. Зная значение PRA% для каждого реципиента можно ориентироваться, насколько легко ему будет подобрать подходящего донора.



#### Рисунок 2.

Как отображаются результаты анализа в программе интерпретации специфических HLA-антител, которые видит врач лаборатории.

- Кроме того, в программе интерпретации результатов при определении HLA-антител можно отсортировать данные по интенсивности флуоресцентного сигнала (MFI) для каждой специфичности антител. Значения расчетного MFI представляют собой единицы интенсивности флуоресценции, приведенные к фоновому значению. Косвенно данные значения указывают на титр детектируемых антител.
- К примеру, на рисунке 3 можно видеть разделение специфичностей HLA-антител на положительные значения (столбики красного цвета) и отрицательные значения (столбики зеленого цвета). В данном примере, наибольший титр антител соответствует специфичности A\*11:01, для этого типа антител величина расчетного MFI составила максимальное значение (20 461 MFI).



**Рисунок 3.** Результаты определения HLA-антител, отсортированные по значениям MFI для каждой специфичности.

#### Лабораторные показатели

### 1. Лабораторные тесты при плановом обследовании реципиентов «листа ожидания»

- HLA-генотипирование реципиента по локусам HLA-A, B, DRB1 на низком разрешении.
- Скрининговый тест на HLA-антитела позволяет разделить реципиентов «листа ожидания» на сенсибилизированных и несенсибилизированных. Сенсибилизированным пациентам проводят дальнейшее обследование на идентификацию антител.
- Идентификационные тесты позволяют определить специфичности выявленных HLA-антител и рассчитать %PRA.

### 2. Обследование реципиентов непосредственно перед трансплантацией

- Перед проведением операции лаборатория как правило уже располагает информацией о генотипе реципиента по локусам HLA-A, B, DRB1 и наличии у него HLA-антител той или иной специфичности.
- Поэтому на первом этапе проводят HLA-генотипирование донора. На основании полученных результатов проводят сопоставление с генотипами реципиентов «листа ожидания», выделяя наиболее подходящих.
- Важно определить генотип донора не только по локусам HLA-A, B и DRB1, но также по HLA-C и DQA1; DQB1, а по возможности и по DP-локусу. Это позволит в дальнейшем соотнести специфичности обнаруженных у реципиента HLA-антител с антигенами донора, и установить неприемлемые комбинации донорских антигенов.
- На втором этапе проводят процедуру **виртуального кросс-матча**, которая заключается в сопоставлении HLA-антигенов донора с профилем специфичностей HLA-антител реципиента.
- В случае, когда антидонорские антитела не обнаружены виртуальный кросс-матч **отрицательный**. При совпадении специфичностей HLA-антител с антигенами донора виртуальный кросс-матч положительный.
- На третьем этапе может быть проведен серологический лимфоцитотоксический тест на совместимость (CDC). Этот вид анализа в большей степени носит субъективный характер, зависит от метода детекции, вида исследуемого образца и определяет в основном HLA-антитела первого класса.

#### Возможные варианты лабораторного заключения

Вариант А: HLA-антитела, в том числе донор-специфические, не выявлены или обнаружены HLA-антитела к антигенам первого и/или второго класса, однако они не являются специфичными к антигенам донора. Виртуальный кросс-матч отрицательный. Серологический лимфоцитотоксический тест (кросс-матч) отрицательный. Пациент из группы низкого риска.

• Рекомендован мониторинг DSA антител после трансплантации.

Вариант В: Обнаружены HLA-антитела к антигенам второго класса, при этом выявленные антитела совпадают по специфичности с донорскими HLA-антигенами. Виртуальный кросс-матч положительный. Серологический лимфоцитотоксический тест (кросс-матч) отрицательный. Пациент из группы среднего иммунологического риска.

• Рекомендован мониторинг DSA антител после трансплантации.

HLA-типирование необходимо для определения генетического соответствия тканевых (лейкоцитарных) антигенов донора и реципиента.

Основным принципом, которым следует руководствоваться в подборе подходящего донора на основании его генотипа – это избегать неприемлемых несоответствий.

Вариант С: Обнаружены HLA-антитела к антигенам первого класса, при этом выявленные антитела совпадают по специфичности с донорскими HLA-антигенами. Виртуальный кросс-матч положительный. Серологический лимфоцитотоксический тест (кросс-матч) отрицательный. Пациент из группы высокого иммунологического риска.

- Рекомендован поиск донора, к которому реципиент не имеет сенсибилизации.
- Плазмоферез в случае родственного донора (для снижения титра антител).
- Мониторинг DSA антител после трансплантации.

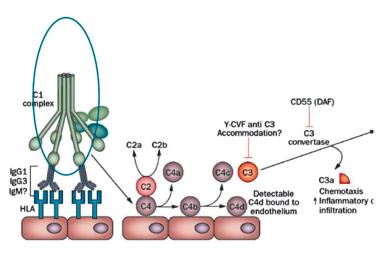
Вариант D: Обнаружены HLA-антитела к антигенам первого и/или второго класса, при этом выявленные антитела совпадают по специфичности с донорскими HLA-антигенами. Виртуальный кросс-матч положительный. Серологический лимфоцитотоксический тест (кроссматч) положительный. Пациент из группы высокого иммунологического риска.

- Рекомендован поиск донора, к которому реципиент не имеет сенсибилизации.
- Плазмоферез в случае родственного донора (для снижения титра антител).
- Мониторинг DSA антител после трансплантации.

Возможные варианты анализа HLA-антител и примерный бланк заключения лаборатории представлены в таблице 1 и на рисунке 9.

| HLA-a+  | ітитела | D:      | SA      | CDC | Уровень | Dovovousous                                                |  |
|---------|---------|---------|---------|-----|---------|------------------------------------------------------------|--|
| 1 класс | 2 класс | 1 класс | 2 класс | CDC | риска   | Рекомендации                                               |  |
| -/+     | -/+     | -       | -       | -   | низкий  | Мониторинг DSA                                             |  |
| -/+     | +       | -       | +       | -   | средний | Мониторинг DSA                                             |  |
| +       | -/+     | +       | +/-     | -   | высокий | Подбор подходящего донора<br>Плазмоферез<br>Мониторинг DSA |  |
| +       | -/+     | +       | -/+     | +   | высокий | Подбор подходящего донора<br>Плазмоферез<br>Мониторинг DSA |  |

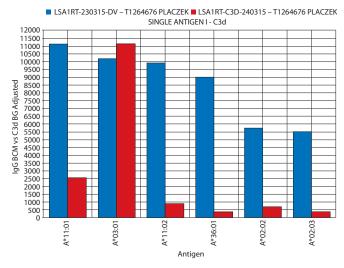
**Таблица 1.** Уровни риска острого отторжения почки и рекомендации в зависимости от варианта обнаружения HLA-антител.


### 3. Мониторинг образованных de novo HLA-антител после трансплантации как ранний маркер отторжения

- На первом этапе IgG HLA-антитела связываются с чужеродными (совпавшими по специфичности) донорскими антигенами на поверхности клеток трансплантата. Далее этот комплекс взаимодействует с белками системы комплемента, запуская каскадную цепочку реакций, приводящую к образованию поры в мембране клетки и неизбежному ее лизису. Через некоторое время картину комплемент-зависимой гибели клеток можно увидеть морфологически. В образце биоптата донорского органа будут видны погибшие клетки и отложения комплемента, что свидетельствует о процессе отторжения.
- Биопсия, как правило, показывает отсроченную картину отторжения, когда уже наступила клеточная гибель и можно видеть отложения комплемента в тканях. Лабораторный тест, подтверж-

Свое повреждающее действие на клетку донор-специфические HLA-антитела реализуют через активацию системы комплемента. Такую реакцию называют комплемент-зависимая цитотоксичность.

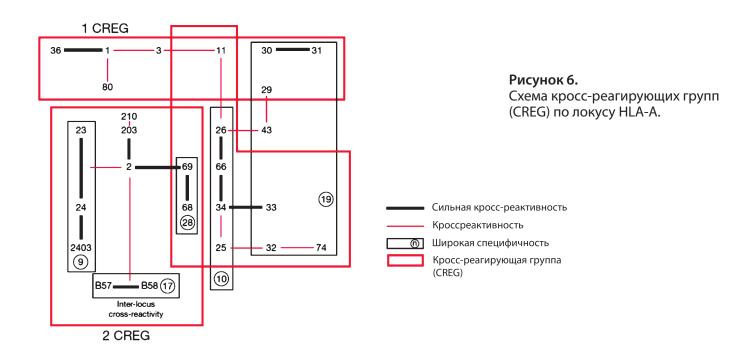
дающий наличие антидонорских HLA-антител дает возможность предсказать развитие этой реакции на самом раннем этапе, когда иммунная система только готовится к атаке, а повреждающее воздействие антител еще не реализовалось в комплемент-зависимую цитотоксичность. Это дает возможность заранее предпринять меры, направленные на удаление повреждающих антител из циркуляции.

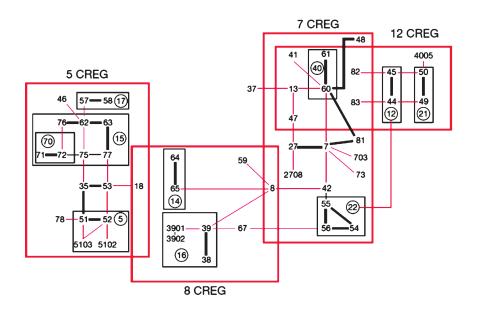

В процессе активации каскада комплемента образуется свободный СЗd компонент комплимента, который можно обнаружить с помощью меченных моноклональных анти-СЗd антител (рисунок 4).



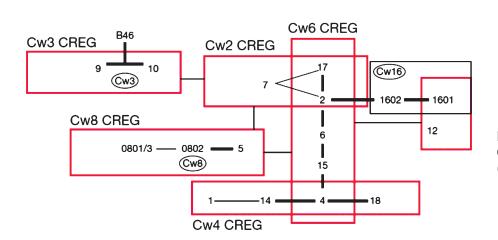
#### Рисунок 4.

Механизм действия донор-специфических антител через активацию системы комплемента.


• Однако показано, что среди пула циркулирующих донор-специфических HLA-антител не все они обладают комплемент-фиксирующей активностью. Обнаружить пул комплемент-фиксирующих HLA-антител среди всех HLA-антител данной специфичности позволяет специальный лабораторный тест, выполняемый на платформе Люминекс к C3d-компоненту комплемента. Появление этого теста в последние годы сделало возможным прогнозировать и предотвращать развитие гуморального отторжения на качественно новом уровне (рисунок 5).




#### Рисунок 5.


Пример результата анализа HLA-антител, когда у реципиента были обнаружены общие анти-HLA антитела класса IgG (синие столбики) и комплемент-фиксирующие анти-HLA антитела (красные столбики).

### ДОПОЛНИТЕЛЬНАЯ ИНФОРМАЦИЯ





**Рисунок 7.** Схема кросс-реагирующих групп (CREG) по локусу HLA-B.



**Рисунок 8.** Схема кросс-реагирующих групп (CREG) по локусу HLA-Cw.

| Наименование и рекв<br>Лаборатория з                                                                                                           | визиты центра (адр<br>гканевого типиров |                       |                             |                     |  |
|------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|-----------------------|-----------------------------|---------------------|--|
| Реципиент                                                                                                                                      |                                         | Į                     | <b>[</b> онор               |                     |  |
| ID реципиента 1265                                                                                                                             | ID донора 152                           |                       |                             |                     |  |
| Дата рождения                                                                                                                                  | Дата рождения                           |                       |                             |                     |  |
| Пол                                                                                                                                            | Пол                                     |                       |                             |                     |  |
| Группа крови                                                                                                                                   | Группа к                                | Группа крови          |                             |                     |  |
| Материал исследования                                                                                                                          |                                         | л исследова           | <br>ния                     |                     |  |
| Дата взятия анализа                                                                                                                            | Дата взятия анализа                     |                       |                             |                     |  |
| Дата выдачи ответа                                                                                                                             |                                         | Дата выдачи ответа    |                             |                     |  |
|                                                                                                                                                | · ·                                     |                       |                             |                     |  |
| НLА-типирование                                                                                                                                | HLA-A                                   | HLA-B                 | HLA-DRB1                    | HLA-DQB1            |  |
| Метод исследования (серология, SSP, SSO, SBT)                                                                                                  |                                         | SSO I                 | uminex                      |                     |  |
| HLA генотип реципиента                                                                                                                         | A*02;<br>A*25                           | B*07;<br>B*15         | DRB1*01;<br>DRB1*03         | Не определялось     |  |
| HLA генотип донора                                                                                                                             | A*02;<br>A*11                           | <b>B*15</b> ;<br>B*35 | <b>DQB1*03</b> ;<br>DRB1*15 | DRB1*03;<br>DQB1*05 |  |
| Выявленны                                                                                                                                      | не антитела к Н                         | łLA                   |                             |                     |  |
| Метод исследования (ИФА, Luminex)                                                                                                              | Люминекс                                |                       |                             |                     |  |
| Индекс реактивных антител PRA%                                                                                                                 |                                         |                       | 5%                          |                     |  |
| Класс I А - не обнаружены В - не обнаружены С - не обнаружены Класс II                                                                         |                                         |                       |                             |                     |  |
| DRB1 - не обнаружены<br>DQA1/B1 - DQB1*01; 03; 05; 06; 08                                                                                      |                                         |                       |                             |                     |  |
| Донор специфические-антитела (DSA): DQB1*03; 05                                                                                                |                                         |                       |                             |                     |  |
| Виртуальный кросс-матч (DSA тест): положительны                                                                                                |                                         |                       |                             |                     |  |
| Серологический кросс-матч (СDС тест): отрицателн                                                                                               | ьный                                    |                       |                             |                     |  |
| Заключение                                                                                                                                     |                                         |                       |                             |                     |  |
| Обнаружены HLA-антитела к антигенам DQB1 (вто ными к антигенам донора. Виртуальный кросс-матч (кросс-матч): отрицательный. Пациент из группы о | -<br>н положительні                     | ый. Серологич         | еский цитотокс              |                     |  |

**Рисунок 9.** Пример бланка отчета лаборатории, проводившей трансплантационное обследование доноров и реципиентов.

# Мультипараметрический анализатор Люминекс 200 (Luminex 200) в лабораторной диагностике при трансплантации солидных органов



#### Основные лабораторные тесты на генетическую и иммунологическую совместимость

- Определение HLA-генотипа реципиентов листа ожидания по локусам HLA A, B, DR.
- Определение HLA-генотипа донора по локусам HLA-A, B, Cw, DR, DQ.
- Определение предсуществующих HLA-антител у реципиентов листа ожидания для выявления HLA-сенсибилизации и определения показателя PRA%.
- Постановка прямой перекрестной пробы (cross-match).
- Посттрансплантационный мониторинг реципиента для предупреждения острого и хронического иммунологического отторжения.

#### Основные клинические преимущества

- Позволяет прогнозировать развитие ранней реакции отторжения до появления гистологически подтвержденного анализа посредством биопсии.
- Позволяет сократить количество инвазивных методов исследования в несколько раз.
- Позволяет направлять на трансплантацию высокосенсибилизированных реципиентов (PRA более 60%), благодаря определению профиля донор-специфических антител.
- Позволяет детектировать комплементфиксирующие антитела к HLA-антигенам с помощью выявления C3d компонента комплемента.
- Дает возможность проводить виртуальный «кросс-матч» реципиентам листа ожидания, что позволяет заранее планировать совместимость с потенциальным донором.
- Качественная диагностика на пред- и пост-трансплантационном этапе является залогом долгосрочного функционирования трансплантата и позволяет избежать повторных трансплантаций.

#### Основные методологические преимущества

- Позволяет проводить весь комплекс тестов на генетическую и иммунологическую совместимость на одной платформе.
- Сокращение времени исследования.
- Автоматизация процессов генотипирования, cross-match и исследования HLA-антител с автоматической интерпретацией результатов.
- Возможность сохранять донорский материал (клеточный лизат) для последующего мониторинга антидонорского иммунного ответа у реципиента.
- Снижение себестоимости теста по сравнению с ручными генетическими и иммунологическими методами.
- Возможность электронного обмена данными и результатами исследования с другими клиниками и online консультации с группой технической поддержки.



#### Информация для заказа

| Каталожный<br>номер                                     | НАИМЕНОВАНИЕ НАБОРА                                                                                            | Количество<br>тестов |  |  |
|---------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|----------------------|--|--|
|                                                         | Наборы для HLA-генотипирования методом SSO на платформе Luminex                                                |                      |  |  |
| 628911                                                  | Набор для генотипирования Lifecodes HLA-A SSO Typing kit                                                       | 50 тестов            |  |  |
| 628915                                                  | Набор для генотипирования Lifecodes HLA-B SSO Typing kit                                                       | 50 тестов            |  |  |
| 628921                                                  | Набор для генотипирования Lifecodes HLA-C SSO Typing kit                                                       | 50 тестов            |  |  |
| 628923                                                  | Набор для генотипирования Lifecodes HLA-DRB1 SSO Typing kit                                                    | 50 тестов            |  |  |
| 628930                                                  | Набор для генотипирования Lifecodes HLA-DQA1/B1 SSO Typing kit                                                 | 50 тестов            |  |  |
| Наборы для определения HLA-антител на платформе Luminex |                                                                                                                |                      |  |  |
| 628215                                                  | Набор для скрининга HLA-антител Lifecodes LifeScreen Deluxe                                                    | 96 тестов            |  |  |
| 628200                                                  | Набор для идентификации HLA-антител 1 класса Lifecodes ID I                                                    | 24 теста             |  |  |
| 628223                                                  | Набор для идентификации HLA-антител 2 класса Lifecodes ID II                                                   | 24 теста             |  |  |
| 265100                                                  | Набор для идентификации HLA-антител 1 класса с рекомбинантными антигенами<br>Lifecodes Single Antigen (LSA I)  | 24 теста             |  |  |
| 265200                                                  | Набор для идентификации HLA-антител 2 класса с рекомбинантными антигенами<br>Lifecodes Single Antigen (LSA II) | 24 теста             |  |  |
| 265400R                                                 | Набор для определения компонента комплемента C3d Lifecodes C3d Detection                                       | 24 теста             |  |  |



ЗАО БиоХимМак

119192, г. Москва, Ломоносовский проспект д. 29, корп. 1

телефон (495) 647-27-40 факс (495) 647-2763 e-mail: hla@biochemmack.ru

www.biochemmack.ru